skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Veller, Carl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hybridization and subsequent genetic introgression are now known to be common features of the histories of many species, including our own. Following hybridization, selection often purges introgressed DNA genome-wide. While assortative mating can limit hybridization in the first place, it is also known to play an important role in postzygotic selection against hybrids and, thus, the purging of introgressed DNA. However, this role is usually thought of as a direct one: a tendency for mates to be conspecific reduces the sexual fitness of hybrids, reducing the transmission of introgressed ancestry. Here, we explore a second, indirect role of assortative mating as a postzygotic barrier to gene flow. Under assortative mating, parents covary in their ancestry, causing ancestry to be “bundled” in their offspring and later generations. This bundling effect increases ancestry variance in the population, enhancing the efficiency with which postzygotic selection purges introgressed DNA. Using whole-genome simulations, we show that the bundling effect can comprise a substantial portion of mate choice’s overall effect as a postzygotic barrier to gene flow. We then derive a simple method for estimating the impact of the bundling effect from standard metrics of assortative mating. Applying this method to data from a diverse set of hybrid zones, we find that the bundling effect increases the purging of introgressed DNA by between 1.2-fold (in a baboon system with weak assortative mating) and 14-fold (in a swordtail system with strong assortative mating). Thus, assortative mating’s bundling effect contributes substantially to the genetic isolation of species. 
    more » « less
  2. The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative,Zea maysssp.mexicana. Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize andZea maysssp.mexicanain the highlands of Mexico some 4000 years after domestication began. We show that variation in admixture is a key component of maize diversity, both at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the origin of modern maize and raise new questions about the anthropogenic mechanisms underlying dispersal throughout the Americas. 
    more » « less